CLASS XI (STREAM SA)

1. Suppose $B C$ is a given line segment in the plane and T is a scalene triangle. The number of points A in the plane such that the triangle with vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ (in some order) is similar to triangle T is
(A) 4
(B) 6
(C) 12
(D) 24

Sol. [C]
Let triangle T is DEF possibilities

\square A can take two positions if $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$
We can arrange order of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in $3!=6$ ways
Total positions which A can take $=6 \times 2=12$
2. The number of positive integers n in the set $\{2,3, \ldots, 200\}$ such that ${ }_{n}$ has a terminating decimal expansion is
[2017]
(A) 16
(B) 18
(C) 40
(D) 100

Sol. [B]

The numbers will be
$2,4,8,16,32,64,128$,
5, 25, 125,
10, 20, 40, 50, 80, 100, 160, 200
3. If a, b, c are real numbers such that $a+b+c=0$ and $a^{2}+b^{2}+c^{2}=1$, then
$(3 a+5 b-8 c)^{2}+(-8 a+3 b+5 c)^{2}+(5 a-8 b+3 c)^{2}$ isequal to
[2017]
(A) 49
(B) 98
(C) 147
(D) 294

Sol. [C]
Expanding are get
$98\left(a^{2}+b^{2}+c^{2}\right)-98(a b+b c+c a)$

$$
\begin{aligned}
& =98-98\binom{1}{2} \\
& =147
\end{aligned}
$$

4. Let $A B C$ be a triangle and M be a point on side $A C$ closer to vertex C than A. Let N be a point on side $A B$ such that $M N$ is parallel to $B C$ and let P be a point on side $B C$ such that $M P$ is parallel to $A B$. If the area of the quadrilateral $B N M P$ is equal to $\frac{5}{18}$ th of the area of triangle $A B C$, then the ratio $A M / M C$ equals. [2017]
(A) 5
(B) 6
(C) $\frac{18}{5}$
(D) $\frac{15}{2}$

Sol. [A]

To find $\frac{A M}{M C}=\frac{\alpha}{a-\alpha}$
$\therefore \triangle B A C \sim \triangle P M C$
$\frac{P M}{C M}=\frac{B A}{A C}$
$\frac{k}{a-\alpha}=\frac{B A}{a}$
$B A=\frac{a k}{a-\alpha}$
\therefore Area of $\triangle A B C=\frac{1}{2} A C \cdot A B=\frac{1}{2} a . \frac{a k}{a-\alpha}$
Area of quad. $\mathrm{BNMP}=\mathrm{Ar}$ trap. $\mathrm{AMPB}-\operatorname{ar} \triangle \mathrm{AMN}$
Also $\triangle N A M \sim \triangle B A C$

$$
\frac{A N}{A M}=\frac{A B}{A C}
$$

$$
\frac{\mathrm{AN}}{\alpha}=\frac{\mathrm{ak}}{(\mathrm{a}-\alpha) \mathrm{a}}
$$

$$
A N=\frac{k \alpha}{a-\alpha}
$$

Put in (iii)
Area quad. $B N M P=\frac{1}{2}(A B+P M) \times A M-\frac{1}{2} A M \times A N$
$=\frac{1}{2}\left|\frac{\mathrm{ak}}{\mathrm{a}-\alpha}+\mathrm{k}\right| \times \alpha-\frac{1}{2} \alpha \times \frac{\mathrm{k} \alpha}{\mathrm{a}-\alpha}$
$=\frac{1}{2}\left\lceil\right.$ Rak $\left.\alpha-\mathrm{ka}^{2}-\mathrm{k} \alpha^{2}\right\rceil$
$=\frac{a k \alpha-k \alpha^{2}}{a-\alpha}$
$=k \alpha$
Given $\alpha k=\frac{5}{18} \cdot \frac{1}{2} \cdot \frac{a^{2} k}{a-\alpha}$
$\frac{36}{5}=\frac{a^{2}}{\alpha(a-\alpha)}$
$36 a \alpha-36 \alpha^{2}=5 a^{2}$
$5 a^{2}-36 a \alpha+36 \alpha^{2}=0$
$5 a^{2}-30 a \alpha-6 a \alpha+36 \alpha^{2}=0$
$5 a(a-6 \alpha)-6 \alpha(a-6 \alpha)=0$
$5 \mathrm{a}=6 \alpha$ or $\mathrm{a}=6 \alpha$
Not true as M is near to C than A
$\therefore \frac{\alpha}{a-\alpha}=\frac{1}{\frac{a}{\alpha}-1}=\frac{1}{\frac{6}{5}-1}=5$
5. Let $\mathrm{n} \geq 4$ be a positive integer and let $\ell_{1}, \quad \ell_{2}, \ldots . ., \ell_{\mathrm{n}}$ be the lengths of the sides of arbitrary n - sided non-degenerate polygon P.Suppose
$\frac{\ell_{1}}{\ell_{2}}+\frac{\ell_{2}}{\ell_{3}}+\square^{\ell} \frac{\mathrm{n}-1}{\ell_{\mathrm{n}}}+{ }^{\ell_{\mathrm{n}}} \frac{}{\ell_{1}}=\mathrm{n}$.
Consider the following statements:
I. The lengths of the sides of P are equal.
ll. The angles of P are equal.
III. P is a regular polygon if it iscyclic.

Then

(A) I is true and I implies II
(B) II istrue
(C) III is false
(D) I and III are true

Sol. [D]

given : $\frac{\ell_{1}}{\ell_{2}}+\frac{\ell_{2}}{\ell_{3}} \ldots \ldots .+\frac{\ell_{n}}{\ell_{1}}=n$
\therefore Use A.M \geq G.M
We get

$\therefore \frac{\mathrm{n}}{\mathrm{n}} \geq 1$
$\Rightarrow \mathrm{n}=\mathrm{n}$
So A.M = G.M
Hence $\frac{\ell_{1}}{\ell_{2}}=\frac{\ell_{2}}{\ell_{3}} \ldots \ldots \ldots=\frac{\ell_{n}}{\ell_{1}}=k$
$\Rightarrow \mathrm{k}=\frac{\ell_{1}+\ell_{2} \ldots \ldots+\ell_{\mathrm{n}}}{\ell_{2}+\ell_{3} \ldots . .+\ell_{\mathrm{n}}+\ell_{1}}=1$
$\Rightarrow \ell_{1}=\ell_{2} \ldots \ldots . .=\ell_{n}$
6. Consider the following statements. For any integer n ,
l. $n^{2}+3$ is never divisible by 17 .
II. $n^{2}+4$ is never divisible by 17 .

Then
[2017]
(A) both I and II are true
(B) both I and II are false
(C) I is false and II is true
(D) I is true and II is false

Sol. [D]
$\mathrm{n}^{2}+4$ is divisible by 17 check at $\mathrm{n}=9$
$\because \frac{\mathrm{n}^{2}+3}{17}=\frac{\mathrm{n}^{2}+4}{17}-\frac{1}{17}$ not divisible by 17
7. Let S be the set of all ordered pairs (x, y) of positive integers, with HCF $(x, y)=16$ and $\operatorname{LCM}(x, y)=48000$. The number of elements inS is
[2017]
(A) 4
(B) 8
(C) 16
(D) 32

Sol. [B]
$48000=16 \times 3000$

$$
=16 \times\left[3^{1} \times 2^{3} \times 5^{3}\right]
$$

As H.C.F. is 16 So 2^{3} can be selected in 1 way \& $3^{1} \times 5^{3}$ can be seleted in $(1+1)(3+1)=8$ ways No of ordred pairs $=8$
8. Consider the set A of natural numbers n whose units digit is nonzero, such that if this units digit is erased, then the resulting number divides n . If K is the number of elements in the set A , then
[2017]
(A) K is infinite
(B) K is finite but $\mathrm{K}>100$
(C) $25 \leq \mathrm{K} \leq 100$
(D) $\mathrm{K}<25$

Sol. [D]
Such numbers are $=9$ from 11 to 19
4 i.e. (22, 24, 26, 28)
3 i.e. (33, 36, 39)
2 i.e. $(44,48)$
5 i.e. (55, 66, 77, 88, 99)
23
9. There are exactly twelve sundays in the period from january 1 to march 31 in a certain year. Then the day corresponding to february 15 in that year is
[2017]
(A) Tuesday
(B) Wednesday
(C) Thursday
(D) not possible to determine from the given data

Sol. [C]
Obviously, 1st Jan will be monday as there will be 90 days from jan. 1 to march 31 (Non leap year) (If year is leap year then days will be $91=13$ weaks not possible
$\therefore 15$ th February will be Thursday
10. Consider a three-digit number with the following properties:
I. If its digits in units place and tens place are interchanged, the number increases by 36;
II. If its digits in units place and hundreds place are interchanged, the number decreases by 198. Now suppose that the digits in tens place and hundreds place are interchanged. Then the number.
[2017]
(A) increases by 180
(B) decreasesby 270
(C) increases by 360
(D) decreases by 540

Sol. [D]
Let Three digit No is $100 a+10 b+c$
Given $100 a+10 b+c=100 a+10 c+b-36$
$9 b-9 c+36=0$
$\mathrm{c}=\mathrm{b}+4$
$\mathrm{b}=\mathrm{c}-4$
Also given $100 a+10 b+c=100 c+10 b+a+198$
$99 a-99 c=198$
$a=c+2$
\therefore Now $100 \mathrm{a}+10 \mathrm{~b}+\mathrm{c}-(100 \mathrm{~b}+10 \mathrm{a}+\mathrm{c})$

$$
\begin{equation*}
=90(a-b) \tag{ii}
\end{equation*}
$$

$$
=90(c+2-c+4) \quad \text { (use (i) \& (ii)) }
$$

$$
=540
$$

\therefore value decrease by 540
11. Consider four triangles having sides $(5,12,9),(5,12,11),(5,12,13)$ and $(5,12,15)$. Among these the triangle having maximum areahas sides
[2017]
(A) $(5,12,9)$
(B) $(5,12,11)$
(C) $(5,12,13)$
(D) $(5,12,15)$

Sol. [C]
Clearly area of Δ having sides $(5,12,13)$
is greatest (use $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
12. In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further 44 girls leave the class, the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
[2017]
(A) 16
(B) 24
(C) 30
(D) 36

Sol. [B]
Let no of Boys $=x$
\& Let no of girls $=y$
Given $\frac{\left(\frac{4 x}{5}\right)}{y}=\frac{2}{3}$
$\frac{2 x}{5 y}=\frac{1}{3}$

$\overline{\overline{\overline{\bar{"}}}}$
 $y=\frac{6 x}{5}$

Also, $\frac{\binom{4 x}{-5}}{y-44}=\frac{5}{2}$
$8 x=25(y-44)$
$8 x=25\left(\frac{6 x}{5}-44\right)$
(use 1)
$x=50$
$y=60$
13. Let X, Y, Z be respectively the areas of a regular pentagon, regular hexagon and regular heptagon which are inscribed in a circle of radius 1 . Then
[2017]
(A) $\frac{X}{5}<\frac{Y}{6}<\frac{Z}{7}$ and $X<Y<Z$
(B) $\frac{X}{5}<\frac{Y}{6}<\frac{Z}{7}$ and $X>Y>Z$
(C) $\frac{X}{5}>\frac{Y}{6}>\frac{Z}{7}$ and $X>Y>Z$
(D) $\frac{X}{5}>\frac{Y}{6}>\frac{Z}{7}$ and $X<Y<Z$

Sol. [D]

Area of Pentagon $=5 \times \frac{1}{2} \sin 72^{\circ}=2.377=x$

$$
\text { Area of hexagon }=6 \times \frac{1}{2} \sin 60^{\circ}=3 \times \frac{\sqrt{3}}{2}=2.598=y
$$

Area of heptagon $=7 \times \frac{1}{2} \sin \frac{360^{\circ}}{7}=2.73=z$

[2017]
(A) 12
(B) 13
(C) 14
(D) 15

Sol. [C]

${ }^{n-1} C_{5}+{ }^{n-1} C_{6}<{ }^{n} C_{7}$
${ }^{n} C_{6}<{ }^{n} C_{7}$
$\frac{n!}{6!(n-6)!}<\frac{n!}{7!(n-7)!}$
$\mathrm{n}-6>7$
$n>13$
$\mathrm{n}_{\text {min }}=14$
15. In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ration of the number of girls to the total number of students is
[2017]
(A) $\frac{z-x}{y-x}$
(B) $\frac{z-y}{y-x}$
(C) $\frac{z+y}{y-x}$
(D) $\frac{z+x}{y-x}$

Sol. [A]

Given
Let no. of Boys $=B$ \& no of girls $=G$
\therefore Sum of marks obtained by boys $=$ B. x
\therefore Sum of marks obtained by girls $=$ G.y
Now, given

$$
\frac{B x+G y}{B+G}=z
$$

$B(x-z)=G(z-y)$
$\frac{B}{G}=\frac{z-y}{x-z}$
Add 1

$$
\begin{aligned}
& \frac{B}{G}+1=\frac{z-y}{x-z}+1 \\
& \Rightarrow \frac{B+G}{G}=\frac{x-y}{x-z} \\
& \Rightarrow \frac{G}{B+G}=\frac{z-x}{y-x}
\end{aligned}
$$

Section 2-Part A-Physics

16. Particle sused in the Rutherford's scattering experiment to deduce the structure of atoms
(A) had atomic number 2 and were fully ionised.
(B) had atomic number 2 and were neutral.
(C) had atomic number 4 and were fully ionised.
(D) had atomic number 4 and were neutral.

Sol. [A]

α-particle bombard during experiment
α-particles ionized helium
17. The number of completely filled shells for the element ${ }_{16} S^{32}$ is
(A) 1
(B) 2
(C) 3
(D) 4

Sol. [B]
Electronic configuration of sulphur is $1 \mathrm{~S}_{2}, 2 \mathrm{~S}_{2}, 2 \mathrm{P}_{6}, 3 \mathrm{~S}_{2}, 3 \mathrm{P}_{4}$
18. In an experiment on simple pendulum to determine the acceleration due to gravity, a student measures the elngth of the thread as 632 cm and diameter of the pendulum bob as 2.256 cm . The student should take the lenght of the pendulum to be
[2017]
(A) 64.328 cm
(B) 64.36 cm
(C) 65.456
(D) 65.5 cm

Sol. [B]
length should be taken up to com
$\ell_{\text {net }}=63.2+\frac{2.256}{2}$
$\Rightarrow 64.328$
by signlicont figures
$\ell_{\text {net }} \Rightarrow 64.3 \mathrm{~cm}$
19. A uniform metallic wire of lenght L is mounted in two configurations. In configuration I (triangle), it is an equilateral triangle and a voltage V is applied to corners A and B. In configuration 2 (circle), it is bent in the form of a circle, and the potential v is applied at diameterically opposite points P and Q . The ratio of the power dissipated in configuration 1 to configuration 2 is.

(A) $2 / 3$
(B) $9 / 8$
(C) $5 / 4$
(D) $7 / 8$

Sol. [B]

$R=\frac{\rho \ell}{A}$
$\left(\mathrm{R}_{1}=\frac{\rho^{\frac{\ell}{\ell}}}{\mathrm{A}}\right)$
$\frac{1}{\mathrm{R}_{\mathrm{ep}}} \Rightarrow \frac{1}{2 \mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{1}} \Rightarrow 2$
$R_{\text {eq }}=-\frac{2 R_{1}}{3}=\frac{2 \rho \frac{\ell}{3}}{3 \mathrm{~A}}$
$\mathrm{i}_{1}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{eq}}}=\frac{\mathrm{V}}{2 \mathrm{e} \ell} 9 \mathrm{~A}$

20. Six objects are placed at the vertices of a regular hexagon. The geometric center of the hexagon is at the origin with objects 1 and 4 on the x-axis (see figure). The mass of the $k^{\text {th }}$ object is $m k=k M\left|\operatorname{cosq}_{k}\right|$ where i is an integer, M is a constant with dimension of mass, and q_{k} is the angular position of the kth verted measured from the positive x-axis in the counter-clockwise sense. If the net gravitational force on a body at the centroid vanishes, the value of i is
[2017]

(A) 0
(B) 1
(C) 2
(D) 3

Sol. [A]
For Gravitational equilibrium ($\mathrm{F}_{\text {Net }}$) $\Rightarrow 0$
All Diagonal opposite should haveequal mass
$2 i^{\circ} M \cos 60^{\circ} \Rightarrow 4 i^{\circ} M \cos \left(60^{\circ}+180^{\circ}\right)$
Thus $\mathrm{i}=0$
21. A mirror is placed at an angle of 30° with respect to y-axis (see figure). A light ray travelling in the negative y-direction strikes the mirror. The direction of the reflected ray is given by the vector

(A) \hat{i}
(B) $\hat{i}-\sqrt{3} \hat{j}$
(C) $\sqrt{3} \hat{i}-\hat{j}$
(D) $\hat{i}-2 \hat{j}$

Sol. [C]

Incident Ray $=-\hat{j}$
Reflected Ray

Vector $\Rightarrow \frac{\sqrt{3}^{3}}{2} \hat{i}-\frac{1}{2} \hat{j}$
22. A total charge q is divided as q_{1} and q_{2} which are kept at two of the vertices of an equilateral triangle of side a. The magnitude of the electric field E at the third vertex of the triangle is to be depicted schematically as a function of $x=q_{1} / q$. Choose the correct figure.
(A)

(B)

(C)

(D)

Sol. [C]

$$
\begin{aligned}
& E_{\text {net }}=E_{1}+E_{2} \\
& q=q_{1}+q_{2} \\
& \left|E_{\text {net }}\right|=\sqrt{\left(\frac{k q}{a}\right)^{2}+\left(\frac{k g}{a}\right)^{2}+\frac{2 k}{2 k} \cdot{ }^{2} \mathrm{c} a^{2} g} 60^{\circ} \\
& E_{\text {net }}=\frac{k}{a} \sqrt{q_{1}^{2}+q_{2}^{2}+q_{1} q_{2}} \\
& E_{\text {net }}=\frac{k}{a} \sqrt{q_{1}^{2}+\left(q-q_{1}\right)^{2}+q_{1}\left(q-q_{1}\right)} \\
& =\frac{k}{a q} \times \sqrt{\left.\left(\frac{q}{q}\right)^{2}+1^{2}+\left(\frac{q}{q}\right)^{2}\right)^{2}-\frac{q q}{q} \frac{q}{q} \frac{1}{q^{-}} q^{2}} \\
& =\frac{k}{a q} \sqrt{x^{2}+1-x} \\
& E_{\text {net }}=\frac{k}{a q}\left|\left(\sqrt{(x-1 / 2)^{2}+3 / 4}\right)\right| \\
& \text { Minima must be at }|x=1 / 2|
\end{aligned}
$$

23. The refractive index of water in a biology laboratory tank veries as $1.33+0.002 / \lambda^{2}$, where λ is the wavelength of light. Small pieces of organic matter of different colours are seen at the bottom of the tank using a travelling microscope. Then the image of the orgainc matter appears
[2017]
(A) deeper for the violet pieces than the green ones.
(B) shallower for the blue pieces than the orange ones.
(C) at the same depth for both the blue and orange pieces.
(D) deeper for the green pieces than the red ones.

Sol. [B]

Theoritical
24. Two students P and Q perform an experiment to verify Ohm's law for a conductor with resistance R. They use a current source and a voltmeter with least counts of 0.1 mA and 0.1 mV , respectively. The plots of the variation of voltage $\operatorname{drop}(\mathrm{V})$ across R with current (I) for both are shown below
[2017]

The statement which is most likely to be correct is:
(A) P has only random error (s).
(B) Q has only systematic error (s).
(C) Q has both random and systematic errors.
(D) P has both random and systematic errors.

Sol. [D]

Theoritical

25. A cylindrical vessel of base radius R and height H has a narrow neck of height h and radius r at one end (see figure). The vessel is filled with water (density ρ_{w}) and its neck is filled with immiscible oil (density ρ_{0}). Then the pressure at

(A) M is $\mathrm{g}\left(\mathrm{h} \rho_{0}+\mathrm{H} \rho_{\mathrm{w}}\right)$
(B) N is $g\left(h \rho_{0}+H \rho_{w}\right) \frac{r^{2}}{R^{2}}$
$\rho_{\mathrm{w}} \mathrm{HR}^{2}+\rho_{0} \mathrm{hr}^{2}$
(C) M is $\mathrm{g} \mathrm{H} \rho_{\mathrm{w}}$
(D) N is $g \frac{R^{2}+r^{2}}{}$

Sol. [A]
Pressure at same height is same
$P_{M}=P_{N}=\rho_{0} g H+\rho_{w} g H$
26. Two cars S_{1} and S_{2} are moving in coplanar concentric circular tracks in the opposite sense with the periods of revolution 3 min and 24 min , respectively. At time $t=0$, the cars are farthest apart. Then, the two cars will be
[2017]
(A) closest to each other at $t=12 \mathrm{~min}$ and farthest at $t=18 \mathrm{~min}$.
(B) closest to each other at $\mathrm{t}=3 \mathrm{~min}$ and farthest at $\mathrm{t}=24 \mathrm{~min}$
(C) closest to each other at $\mathrm{t}=6 \mathrm{~min}$ and farthest at $\mathrm{t}=12 \mathrm{~min}$
(D) colsest to each other at $\mathrm{t}=12 \mathrm{~min}$ and farthest at $\mathrm{t}=24 \mathrm{~min}$

Sol. [D]

$$
\begin{aligned}
& \omega_{1}=\frac{2 \pi}{3} \\
& \omega_{2}=\frac{2 \pi}{24}
\end{aligned}
$$

time for meet $($ closest $)=\frac{\pi(2 \pi+1)}{\omega_{1}+\omega_{2}} \Rightarrow \frac{4}{3}(2 n+1)$
$t \Rightarrow \frac{4}{3} \sec , 4, \frac{20}{3}, \frac{28}{3}, 12$
time of farthest $\Rightarrow \frac{2 \pi n}{\omega_{1}+\omega_{2}}$
$t \neq 2 n / \frac{4}{3}$
27. In the circuit shown below, a student performing Ohm's law experiment accidently puts the voltmeter and the ammeter as shown in the circuit below; the reading in the voltmeter will be close to

(A) 0 V
(B) 4.8 V
(C) 6.0 V
(D) 1.2 V

Sol. [C]
Voltmeter has very high Resistane thus it is put in parallel. If it is put in series maximum of potential difference will be across voltmeter
28. The bhagirathi and the Alaknanda merge at Deoprayag to form the Ganga with their speeds in the ratio $1: 1.5$. The cross-sectional areas of the Bhagirathi, the Alaknanda and the Ganga are in the ratio $1: 2: 3$. Assuming stremline flow, the ratio of the speed of Ganga to that of the Alaknands is
[2017]
(A) $7: 9$
(B) $4: 3$
(C) $8: 9$
(D) $5: 3$

Sol. [C]

By equation of continuity
Area of Bhagirathi $\Rightarrow A$
Area of Alaknanda $\Rightarrow 2 A$
Area of Ganga $\Rightarrow 3 A$
$V_{B}: V_{A L}: V_{G}: \Rightarrow V: \quad \frac{3}{2} V: V_{1}$
By equation of continuity

$$
\begin{aligned}
& \mathrm{AV}+\frac{3}{2} \mathrm{~A} \cdot 2 \cdot \mathrm{~V} \Rightarrow 3 \mathrm{~A} \cdot \mathrm{~V}_{1} \\
& \mathrm{~V}_{\text {ganga }}=\frac{4}{3} \mathrm{~V} \\
& \frac{V_{\text {Alaknanda }}}{V_{\text {ganga }}} \Rightarrow \frac{3}{4} \mathrm{~V}=8 \\
& 3
\end{aligned}
$$

$$
\mathrm{V}_{\text {ganga }}: \mathrm{V}_{\text {Alaknanda }}=8: 9
$$

29. A long cylindrical pipe of radius 20 cm is closed at its upper end and has an airtight piston of negligible mass as shown. When a 50 Kg mass is attached to the other end of the pistion, it moves down by a distance $\Delta /$ before coming to equilibrium. Assuming air to be an ideal gas, $\Delta / / \mathrm{L}$ (see figure) is close to ($\mathrm{g}=10 \mathrm{~ms}^{2}$, atmospheric pressure is 10^{5} Pascal),

(A) 0.01
(B) 0.02
(C) 0.04
(D) 0.09

Sol. [C]

Process is isothermal
$P_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\left(\mathrm{P}_{0}\right)(\mathrm{A})(\ell) \Rightarrow \mathrm{PA}(\ell+\Delta \ell)$
$P_{\text {final }} \Rightarrow \frac{P_{0} A \ell}{A(\ell+\Delta \ell)} \Rightarrow \frac{P_{0} \ell}{\ell+\Delta \ell}$
By force equilibrium

30. The word "KVPY" is written on a board and viewed through different lense such that board is at a distance beyond the focal length of the lens.

(i)

AdAX
(ii)

Ignorging magnification effects, consider the following statements
(I) Image (i) has been viewed from the planar side of a plano-convex lens and image (ii) from the planar side of a plano-convex lens.
(II) Image (i) has been viewed from the concave side of a plano-concave lens and image (ii) from the convex side of a plano-convex lens.
(iii) Image (i) has been viewed from the cocave side of a plano-concave lens and image (ii) from the planar side of a plano-convex lens.
(iv) Image (i) has been viewed from the planar side of a plano-concave lens and image (ii) from the convex side of a plano-convex lens.
Which of the above statements are correct ?
(A) Only (III)
(B) Only (IV).
(C) Only (III) and (IV).
(D) Allfour.

Sol. [D]

(i) For plano-concave lens or concave lens if object is placed beyond focus image is erected
(ii) For convex lens If object is placed beyond focus image is inverted

Section 3 Part 1 Chemistry

31. The IUPAC name for the following compound is
Cll
(A) 4,6-dimethylheptane
(B) 1,3,5 -trimethylhexane
(C) 2,4-dimethylheptane
(D) 2,4,6-trimethylhexane
[2017]

Sol. [C]

2, 4 - dimethyl heptane.
32. The stability of carbocations
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{\oplus}$
I
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)$
II

III

IV
follows the order
(A) III $<$ IV $<$ II $<$ I
(B) III $<$ IV $<$ I $<$ II
(C) IV $<$ III $<$ II $<$ I
(D) IV $<$ III $<$ I $<$ II

Sol. [B]
(II) is most stable due to resonance then $3^{\circ}>2^{\circ}>1^{\circ}$ carbocation
33. The acidity of compounds I-IV in water
I. Ethanol
II. Acetic Acid
III. Phenol
N. Acetonitrile
follows the order
[2017]
(A) IV $<$ I $<$ III $<$ II
(B) I $<$ II $<$ III $<$ IV
(C) IV $<$ I $<$ II $<$ III
(D) IV $<$ III $<$ I $<$ II

Sol. [A]
Acetic acid is most acidic due to equivalent resonating structure.
34. In the following reaction

[2017]
the major product is
(A)

(B) (B)

(C)

(D)(D)

Sol. [C]
This is a Name Reaction to prepare 1° amine.
35. The reddish brown precipitate formed in the Fehling's test for aldehydes (RCHO) is due to the formation of
[2017]
(A) Cu
(B) $\mathrm{Cu}_{2} \mathrm{O}$
(C) CuO
(D) $(\mathrm{RCOO})_{2} \mathrm{Cu}$

Sol. [B]

Theoritical
36. The reducing ability of the metals $\mathrm{K}, \mathrm{Au}, \mathrm{Zn}$ and Pb follows the order
[2017]
(A) $\mathrm{K}>\mathrm{Pb}>\mathrm{Au}>\mathrm{Zn}$
(B) $\mathrm{Pb}>\mathrm{K}>\mathrm{Zn}>\mathrm{Au}$
(C) $\mathrm{Zn}>\mathrm{Au}>\mathrm{K}>\mathrm{Pb}$
(D) $\mathrm{K}>\mathrm{Zn}>\mathrm{Pb}>\mathrm{Au}$

Sol. [D]

Theoritical
37. White phosphorous catches fire in air to produce dense white fumes. This is due to the formation of
[2017]
(A) $\mathrm{P}_{4} \mathrm{O}_{10}$
(B) PH_{3}
(C) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(D) $\mathrm{H}_{3} \mathrm{PO}_{2}$

Sol. [A]

Theoritical
38. The maximum number of electrons that can be filled in the shell with the principal quantum number $n=4$ is
[2017]
(A) 64
(B) 26
(C) 18
(D) 32

Sol. [D]
$4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d} \& 4 \mathrm{f}$ contains total 32 electrons.
39. At a constant pressure P , the plot of volume (V) as a function of temperature (T) for 2 moles of an ideal gas gives a straight line with a slope $0.328 \mathrm{~L} \mathrm{~K}^{-1}$. The value of P (in atm) is closest to [Gas constant, $\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]
[2017]
(A) 0.25
(B) 0.5
(C) 1.0
(D) 2.0

Sol. [B]
$P V=n R T$
$\square \frac{V^{\prime}}{\bar{T}}=\frac{n R}{P}=$ slope
$\square \mathrm{P}=\frac{\mathrm{nR}}{\text { slope }}=\frac{2 \times 0.0821}{0.328}=0.5$
40. Which of the following transformations can be carried out by using HI as a rducing agent, under acidic conditions?
[2017]
[Given: $\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{I}^{-} \mathrm{E}^{\theta}=0.54 \mathrm{~V}$]
(i) $\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}(\mathrm{s}) \mathrm{E}^{\theta}=0.52 \mathrm{~V}$
(ii) $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}^{2+} \mathrm{E}^{\theta}=-0.41 \mathrm{~V}$
(iii) $\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+} \mathrm{E}^{\theta}=0.77 \mathrm{~V}$
(iv) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}$ (s) $\mathrm{E}^{\theta}=-0.44 \mathrm{~V}$
(A) (i) and (iii)
(B) (ii) and (iv)
(C) only (iii)
(D) only (ii)

Sol. [C]

$\mathrm{Fe}^{+3} \rightarrow \mathrm{Fe}^{+2}$ is having maximum SRP value.
41. $\quad C_{60}$ emerging from a source at a speed (v) has a de Broglie wavelength of $11.0 \AA$. The value of $v\left(\right.$ in m s ${ }^{-1}$) is closest to
[Planck's constant $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}$ s]
[2017]
(A) 0.5
(B) 2.5
(C) 5.0
(D) 30

Sol. [A]

$\lambda=\frac{\mathrm{h}}{\mathrm{mv}} \Rightarrow \mathrm{v}=\frac{\mathrm{h}}{\mathrm{m} . \lambda}=\frac{6.62 \times 10^{-34}}{720 \times 10^{-3} \times 11 \times 10^{-10}}$
42. The lattice energies of $\mathrm{NaCl}, \mathrm{NaF}, \mathrm{KCl}$ and RbCl follow the order
[2017]
(A) $\mathrm{KCl}<\mathrm{RbCl}<\mathrm{NaCl}<\mathrm{NaF}$
(B) $\mathrm{NaF}<\mathrm{NaCl}<\mathrm{KCl}<\mathrm{RbCl}$
(C) $\mathrm{RbCl}<\mathrm{KCl}<\mathrm{NaCl}<\mathrm{NaF}$
(D) $\mathrm{NaCl}<\mathrm{RbCl}<\mathrm{NaF}<\mathrm{KCl}$

Sol. [C]
$\uparrow U \propto \frac{1}{\operatorname{size} \downarrow}$
43. The oxidation states of P atom in $\mathrm{POCl}_{3}, \mathrm{H}_{2} \mathrm{PO}_{3}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$, respectively, are
[2017]
(A) $+5,+4,+4$
(B) $+5,+5,+4$
(C) $+4,+4,+5$
(D) $+3,+4,+5$

Sol. [A]

O. No.

$\mathrm{POCl}_{3}+5$
$\mathrm{H}_{2} \mathrm{PO}_{3}+5$
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}+4$
44. A solution (5 mL) of an acid X is completely neutralized by y mL of 1 M NaOH . The same volume (y ML) of 1 M NaOH is required to neutralize 10 mL of 0.6 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ completely. The normality (N) of the acid X is
[2017]
(A) 1.2
(B) 2.4
(C) 4.8
(D) 0.6

Sol. [B]
(No. of eq. $)_{\mathrm{NaOH}}=\left(\mathrm{No}\right.$. of eq.) $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\Rightarrow(1 \times 1) \times \mathrm{y}=(0.6 \times 2) \times 10$
$\Rightarrow \mathrm{y}=12 \mathrm{ml}$
Now, (No. of eq. $)_{\text {acid }}=(\text { No. of eq. })_{\mathrm{NaOH}}$
$\Rightarrow \mathrm{N} \times 5=(1 \times 1) \times 12$
$\Rightarrow \mathrm{N}=\frac{12}{5}=2.4$
45. 1.25 g of a metal (M) reacts with oxygen completely to produce 1.68 g of metal oxide. The empirical formula of the metal oxide is
[2017] [molar mass of M and O are $69.7 \mathrm{~g} \mathrm{~mol}^{-1}$ and $16.0 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively]
(A) $\mathrm{M}_{2} \mathrm{O}$
(B) $\mathrm{M}_{2} \mathrm{O}_{3}$
(C) MO_{2}
(D) $\mathrm{M}_{3} \mathrm{O}_{4}$

Sol. [B]

$\Rightarrow \frac{1.25}{E}=\frac{1.68}{E+8}$
$\Rightarrow \quad \mathrm{E}=23.25$
$n-$ factor $=\frac{69.7}{23.25} \approx 3$

\square Emprical formula $=\mathbf{M}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$

Section 4 Part-A Biology

46. According to Watson-Crick model, hydrogen bonding in a double-stranded DNA occures between
[2017]
(A) Adenine and guanine
(B) Adenine and thymine
(C) Cytosine and adenine
(D) guanine andthymine

Sol. [B]
A pairs with T \& G pairs with C in DNA.
47. Which ONE of the following statements about mitosis is CORRECT ?
[2017]
(A) One nucleus gives rise to 4 nuclei
(B) Homologous chromosomes synapse during anaphase
(C) The centromeres separate at the onset of anaphase
(D) Non-sister chromatids recombine

Sol. [C]
In anaphase sister chromatids seperates from centromeres so number of chromosome becomes double.
48. Gaseous exchange of oxygen and carbon dioxide between alveolar air and capillaries takes place by
[2017]
(A) Active transport
(B)Diffusion
(C) Carrier-mediated transport
(D) Imbibition

Sol. [B]
By diffusion along concentration gradient.
49. Of the periods listed below, which ONE is the earliest period when Ostracoderms, the jawless and finless fishes, appeared?
[2017]
(A) Devonian period
(B) Cambrian period
(C) Carboniferous period
(D) Silurian period

Sol. [D]
Period is time
50. Scurvy is caused by the deficiency of
[2017]
(A) Nicotinic acid
(B) Ascorbic acid
(C) Pantothenic acid
(D) Retinoic acid

Sol. [B]
Ascorbic acid is required for a variety of biosynthetic pathway. It is required for collagen synthesis during wound healing.
51. Optical activity of DNA is due to its
[2017]
(A) Bases
(B) Sugars
(C) Phosphate
(D) Hydrogenbonds

Sol. [B]
Fact based questions
52. The monarch butterfly avoids predators such as birds by
[2017]
(A) Changing colorfrequently
(B) Flying away from the predator swiftly
(C) Producing a chemical obnoxious to the predator
(D) Producing ultrasonic waves

Sol. [C]
Pray may have some defence mechanism to protect itself from predator like producing toxic substance.
53. Filariasis is caused by
[2017]
(A) Entamoeba histolytica
(B) Plasmodium falciparum
(C) Trypanosoma brucei
(D) Wuchereriabancrofti

Sol. [D]
Wuchereria bancrofti lives in lymphatic vessels and causes swelling of lower limps and scrotum
54. Which ONE of the following conversions does NOT happen under anaerobic conditions ?
[2017]
(A) Glucose toethanol by Saccharomyces.
(B) Lactose to lactic acid by Lactobacillus.
(C) Glucose to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ by Saccharomyces. (D) Cellulose to glucose by Cellulomonas.

Sol. [C]
Glucose to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ is formed during aerobic respiration.
55. An amont of 18 g glucose corresponds to
[2017]
(A) 1.8 mole
(B) 1 mole
(C) 0.18 mole
(D) 0.1 mole

Sol. [D]
Mole $=\frac{\text { mass in gram }}{\text { molecular weight }}=\frac{18}{180}=0.1$
56. The number of electrons required to reduce one molecule of oxygen to water during mitochondrial oxidation is
[2017]
(A) 4
(B) 3
(C) 2
(D) 1

Sol. [A]
$\mathrm{O}_{2}+4 \mathrm{e}^{-}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
57. Which ONE of the following molecules is dervied from pantothenic acid ?
[2017]
(A) Thiamine pyrophosphate
(B) Nicotinamide adenine dinucleotide phosphate
(C) Flavin adeninedinucleotide phosphate
(D) Acetyl-CoA

Sol. [D]
Vitamin B_{5} is pantothenic acid, that synthesize Co-enzyme A (CoA)
58. Match the disease given in Column I with the principal causal organism in Column II and choose the correct combination.
Colum I
(P) AIDS
(Q) Syphilis
(R) Viral hepatitis
(S) Gonorrhoea
(A) P-iv, Q-iii, R-i, S-ii
(B) P-iv, Q-ii, R-i, S-iii
(C) P-i, Q-ii, R-iv, S-iii
(D) P-i, Q-iv, R-ii, S-ii

Column II

(i) HBV
(ii) Neisseriasp.
(iii) Treponemasp.
(iv) HIV
[2017]

Sol. [A]
59. Chromosomes are classified based on the position of centromere. A chromosome having a terminal centromere is called
[2017]
(A) metacentric
(B) telocentric
(C) sub-metacentric
(D) acrocentric

Sol. [B]

60. Which ONE of the following options lists the primary energy source (s) for all forms of life on earth ?
[2017]
(A) Light, Inorganic substances
(B) Inorganic substances, Organic substances
(C) Light, Organic substances
(D) $\mathrm{N}_{2}, \mathrm{CO}_{2}$

Sol. [A]
Autotrophs uses light for photosynthesis and some bacteria inorganic compound for chemosynthesis these organisms are produces in ecosystem.

Section 5-Part B-Mathematics

61. Let $A B C D$ be a trapezium with parallel sides $A B$ and $C D$ such that the circle S with $A B$ as its diameter touches $C D$. Further, the circle S passes through the midpoints of the diagonals $A C$ and $B D$ of the trapezium. The smallest angle of the trapezium is
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{5}$
(D) $\frac{\pi}{6}$

Sol. [D]

Join AN
$\because \angle \mathrm{ANB}=90^{\circ}$
In \triangle ANB,
$\cos \theta=\frac{B N}{2 r}$
$B N=2 r \cos \theta$
$B D=2 B N=4 r \cos \theta$
In $\triangle \mathrm{BQD}$
$\sin \theta=\frac{\mathrm{BQ}}{\mathrm{BD}}=\frac{\mathrm{r}}{4 \mathrm{rcos} \theta}$
$\sin 2 \theta=\frac{1}{2}$
$\theta=15^{\circ}$
Now similarly $\alpha=15^{\circ}=\theta$ \& AC $=4 r \cos \alpha$
\therefore Trapezium will be isosceles
$\because \angle \mathrm{ADB}=30^{\circ}$
62. Let S be the set of all points $\binom{\left(\frac{a}{},--\mid\right.}{\left.\frac{b}{d}\right)}$ on the circle with radius 1 centred at $(0,0)$ where a and b are relatively prime integers, c and d are relatively prime integers (that is $\operatorname{HCF}(a, b)=\operatorname{HCF}(c, d)=1)$, and the integers b and d are even. Then the set S
[2017]
(A) is empty
(B) hasfour elements
(C) has eight elements (D) is infinite

Sol. [A]
circle is $x^{2}+y^{2}=1$
$y= \pm \sqrt{1-\frac{a^{2}}{b^{2}}}$
$\left(\because x=\frac{a}{b}\right)$
$y= \pm \frac{1}{b} \sqrt{b^{2}-a^{2}}$
As y is retional so
$\stackrel{b^{2}}{\downarrow}-\mathrm{a}^{2}=\mathrm{p}^{2} \downarrow$
even odd odd
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{p}^{2}$
$=(2 k+1)^{2}+(2 \lambda+1)^{2}$
$=4 k^{2}+4 k+1+4 \lambda^{2}+4 \lambda+1$
$b^{2}=4\left(k^{2}+\lambda^{2}+k+\lambda\right)+2 \quad$ impossilbe
as L.H.S. is multiple of 4 but R.H.S is not multiple of 4
63. Suppose we have two circles of radius 2 each in the plane such that the distance between their centres is $2 \sqrt{3}$. The area of the region common to both circles lies between
[2017]
(A) 0.5 and 0.6
(B) 0.65 and 0.7
(C) 0.7 and 0.75
(D) 0.8 and 0.9

Sol. [C]
Let two circles are
$x^{2}+y^{2}=4 \&(x-2 \sqrt{3})^{2}+y^{2}=4$
\therefore equation of common chord is $x=\sqrt{3}$

$\therefore A(\sqrt{3}, 1), B(\sqrt{3},-1)$
So $\angle A C_{1} B=60^{\circ}$
$A B=2 \& M C_{1}=\sqrt{3}$

Required area $=2$ [area of sector $\mathrm{C}_{1} \mathrm{AB}-\operatorname{ar} \Delta \mathrm{C}_{1} \mathrm{AB}$]
64. Let C_{1}, C_{2} be two circles touching each other externally at the point A and let $A B$ be the diameter of circle C_{1}. Draw a secant $B A_{3}$ to circle C_{2}, intersecting circle C_{1} at a point $A_{1}(\neq A)$, and circle C_{2} at points A_{2} and A_{3}. If $\mathrm{BA}_{1}=2, \mathrm{BA}_{2}=3$ and $\mathrm{BA}_{3}=4$, then the radii of circles C_{1} and C_{2} are respectively
[2017]
(A) $\frac{\sqrt{30}}{5}, \frac{3 \sqrt{30}}{10}$
(B) $\frac{\sqrt{5}}{2}, \frac{75}{10}$
(C) $\frac{\sqrt{6}}{2}, \frac{6}{2}$
(D) $\frac{\sqrt{10}}{3}, \frac{17 \sqrt{10}}{30}$

Sol. [A]

$B M=A_{1} M=1$
$\mathrm{A}_{1} \mathrm{~A}_{2}=1$
$A_{2} N=A_{3} N=\frac{1}{2}$
Let radius of C_{1} isr r_{1}
Let radius of C_{2} is r_{2}
$P M=\sqrt{r_{1}{ }^{2}-1}, Q N=\sqrt{r_{2}{ }^{2}-\frac{1}{4}}$
$\because \triangle \mathrm{QNB} \sim \Delta \mathrm{PMB}$
$\therefore \frac{\sqrt{r_{2}^{2}-\frac{1}{4}}}{\sqrt{r_{1}{ }^{2}-1}}=\frac{B N}{B M}=\frac{7 / 2}{1}$
$\Rightarrow \underset{2}{4 r^{2}}=49 r_{1}^{2}-48 \ldots$ (i)
Also, in \triangle QNB

$$
\mathrm{BQ}^{2}=\mathrm{BN}^{2}+\mathrm{NQ}^{2}
$$

$$
\begin{equation*}
\left(2 r_{1}+r_{2}\right)^{2}=\frac{49}{4}+r_{2}^{2}-\frac{1}{4} \tag{ii}
\end{equation*}
$$

$\Rightarrow r_{1}^{2}+r_{1} r_{2}=3 \ldots$
Solve (i) \& (ii)

$$
r_{1}=\sqrt{\frac{6}{5}}=\frac{\sqrt{30}}{5} \& r=\frac{3 \sqrt{30}}{10}
$$

$$
\begin{aligned}
& =.723
\end{aligned}
$$

65. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be real numbers between -5 and 5 such that $|\mathrm{a}|=\sqrt{4-\sqrt[5]{-\mathrm{a}}},|\mathrm{b}|=\sqrt{4+\sqrt[5]{-\mathrm{b}}}$,
$|\mathrm{c}|=\sqrt{4-\sqrt[5]{+\mathrm{c}}},|\mathrm{d}|=\sqrt{4+\sqrt[5]{+\mathrm{d}}}$.
[2017]
Then the product abcd is
(A) 11
(B) -11
(C) 121
(D) -121

Sol. [A]
Given $|\mathrm{a}|=\sqrt{4-\sqrt{-\mathrm{a}}}$
squaring

$$
a^{2}=4-\sqrt{5-a}
$$

$\Rightarrow a^{4}+16-8 a^{2}=5-a$
$\Rightarrow a^{4}-8 a^{2}+a+11=0$
Similarly squaring other given equations
\& solving we can say that $a, b,-c,-d$ are roots
of $x^{4}-8 x^{2}+x+11=0$
\therefore product of roots

$$
\mathrm{ab}(-\mathrm{c})(-\mathrm{d})=11
$$

$$
a b c d=11
$$

Section 6-Part B-Phsysics

66. Persons A and B are standing on the opposite sides of a 3.5 m wide water stream which they wish to cross. Each one of them has a rigid wooden plank whose mass can be neglected. However, each plank is only slightly longer than 3 m . So they decide to arrange them together as shown in the figure schematically. With B (mass 17 kg) standing, the maximum mass of A , who can walk over the plank is close to ,
[2017]

3.5
(A) 17 kg .
(B) 65 kg .
(C) 80 kg .
(D) 105 kg .

Sol. [C]

$\mathrm{N}=10 \mathrm{~m}$
$\mathrm{N} \times 0.5=170 \mathrm{x}$
$10 \mathrm{~m} \times \frac{5}{10}=170 \mathrm{x} \Rightarrow \mathrm{m}=\frac{170 \mathrm{x}}{5}$
Maximum value is near to 2.5 infact shift by less than 2.5

Maximum vlaue of $m=\frac{170}{5} \times 2.5=85$
Opction (C) is correct
67. Two different liquids of same mass are kept in two identical vessels, which are placed in a freezer that extracts heat from them at the same rate causing each liquid to transform into a solid. The schematic figure below shows the temperature T vs time t plot for the two materials. We denote the specific heat of metrials in the liquid (solid) states to be $\mathrm{C}_{\mathrm{L} 1}\left(\mathrm{C}_{\mathrm{S} 1}\right)$ and $\mathrm{C}_{\mathrm{L} 2}\left(\mathrm{C}_{\mathrm{S} 2}\right)$ respectively.
[2017]

(A) $\mathrm{C}_{\mathrm{L} 1}<\mathrm{C}_{\mathrm{L} 2}$ and $\mathrm{C}_{\mathrm{S} 1}<\mathrm{C}_{\mathrm{S} 2}$
(B) $\mathrm{C}_{\mathrm{L} 1}>\mathrm{C}_{\mathrm{L} 2}$ and $\mathrm{C}_{\mathrm{S} 1}>\mathrm{C}_{\mathrm{S} 2}$
(C) $\mathrm{C}_{\mathrm{L} 1}>\mathrm{C}_{\mathrm{L} 2}$ and $\mathrm{C}_{\mathrm{S} 1}>\mathrm{C}_{\mathrm{S} 2}$
(D) $\mathrm{C}_{\mathrm{L} 1}<\mathrm{C}_{\mathrm{L} 2}$ and $\mathrm{C}_{\mathrm{S} 1}>\mathrm{C}_{\mathrm{S} 2}$

Sol. [B]

Let Refrigerater extract Q joul/per second
Q. $t \Rightarrow m s\left(T_{f}-T\right)$

Higher the specific heat, Higher the slope
68. A ray of light originates from inside a glass slab and is incident on its inner surface at an angle θ as shown,
[2017]

In this experiment the location x of the spot where the ray hits the screen is recorded. Which of the following correctly shows the plot of variation of x with the angle θ ?

A.

B.

C.

D.
(A) A
(B) B
(C) C
(D) D

Sol. [A]
This is case of Total Internal Reflector
($90-\theta$) is incident angle. As θ increases thus incident angle decreaes. Initially Ray will be Reflected at θ_{C} angle will be TIR after words Refraction takes place
69. Four identical pendulums are made by made by attaching a small ball of mass 100 g on a 20 cm long thread and suspended from the same point. Now each ball is given charge Q so that balls move away from each other with each thread making an angle of 45° from the vertical. The value of Q is close $\frac{1}{0(4 \pi} \epsilon_{0}=9 \times 9{ }^{9}$ in SI units)
[2017]
(A) $1 \mu \mathrm{C}$
(B) $1.5 \mu \mathrm{C}$
(C) $2 \mu \mathrm{C}$
(D) $2.5 \mu \mathrm{C}$

Sol. [B]

$\tan \theta \Rightarrow \frac{\mathrm{Fe}}{\mathrm{mg}}$
$\tan 45^{\circ} \Rightarrow \frac{\frac{\mathrm{kQ}^{2}}{\binom{\left.20 \times 10^{-2}\right)^{2}}{V^{2}}^{2}}}{100 \times 10 \times 10^{-3}}$
$\theta=\sqrt{\frac{20}{9} \times 10^{-12}}=1.5 \mu \mathrm{c}$
70. Two parallel discs are connected by a rigid rod of length $L=0.5 \mathrm{~m}$ centrally. Each disc has a slit oppositely placed as shown in the figure. A beam of neutral atoms are incident on one of the discs axially at different velocities v , while the system is rotated at angular speed of $600 \mathrm{rev} / \mathrm{second}$ so that atoms only with a specific velocity emerge at the other end. Calculate the two largest speeds (in meter/second) of the atoms that will emerge at the other end.

(A) 75,25
(B) 100,50
(C) 300,100
(D) 600, 200

Sol. [D]

Time gap between two disc should
$\mathrm{t}=\frac{\pi}{\omega}, \frac{3 \pi}{\omega^{\prime}} \omega \underline{5 \pi}$
$V_{1}=\frac{0.5}{\frac{\lambda^{2}}{600} 2 \pi} \Rightarrow 600 \mathrm{~m} / \mathrm{s}$ 600
$V_{2}=\frac{0.5}{3 \pi / 600 \times 2 \pi} \Rightarrow 200 \mathrm{~m} / \mathrm{s}$

Section 7 -Part-B chemistry

71. Among the following compouds, E / Z isomerism is possible for
[2017]
(A) 2-methylbut-2-ene
(B) 2-methylbut-1-ene
(C) 3-methylpent-1-ene
(D) 3-methylpent-2-ene

Sol. [D]

This show E/Z isomerism
72. In thereaction

x and y,respectively, are
(A) $x=\mathrm{CH}_{3} \mathrm{OH} ; \mathrm{y}=\mathrm{Pd} / \mathrm{BaSO}_{4}$, quinoline, H_{2}
(B) $x=\mathrm{CH}_{3} \mathrm{l} ; \mathrm{y}=\mathrm{Pd} / \mathrm{BaSO}_{4}$, quinoline, H_{2}
(C) $x=\mathrm{CH}_{3} \mathrm{l} ; \mathrm{y}=\mathrm{Na}$ in liq. NH_{3}
(D) $x=\mathrm{CH}_{3} \mathrm{OH} ; y=\mathrm{Na}$ in liq. NH_{3}

Sol. [C]

(Trans alkene)
73. Among the following molecules, the one with the largest bond angle at the central atom is
[2017]
(A) ClF_{3}
(B) POCl_{3}
(C) BCl_{3}
(D) SO_{3}

Sol. [A]

74. A compound has the following composition by weight $; \mathrm{Na}=18.60 \%, \mathrm{~S}=25.80 \%, \mathrm{H}=4.02 \%$ and $\mathrm{O}=51.58 \%$ Assuming that all the hydrogen atoms in the compound are part of water of crystallization, the correct molecular formula of the compound is
[2017]
(A) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Sol. [D]

Elements	$\%$	moles	Simplest ratio
Na	18.6	$\frac{18.6}{23}=0.8$	1×2
S	25.8	$\frac{25.8}{32}=0.8$	1×2
O	51.58	$\frac{51.58}{16}=3.22$	4×2
H	4.02	$\frac{4.02}{1}=4.02$	5×2

\Rightarrow Formula is $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
75. Xg of ice at $0^{\circ} \mathrm{C}$ is added to 340 g of water at $20^{\circ} \mathrm{C}$. The final tempeature of the resultant mixture is $5^{\circ} \mathrm{C}$. The value of X (ing) is closest to
[Heat of fusion of ice $=333 \mathrm{~J} / \mathrm{g}$; Specific heat of water $=4.184 \mathrm{~J} / \mathrm{g} . \mathrm{K}$]
[2017]
(A) 80.4
(B) 52.8
(C) 120.6
(D) 60.3

Sol. [D]
Use the concept of calorimetry and solve to get the answer.

Section 8-Part B-Biology

76. Considering ABO blood grouping system in humans, during blood transfusion some combinations of blood groups are compatible $(\sqrt{ })$, whereas the others are incompatible (X). Which ONE of the following options is CORRECT?
[2017]
(A)

(B)

		Recipient			
		0	A	B	AB
$\begin{aligned} & \bar{o} \\ & \bar{O} \\ & 0 \end{aligned}$	0	X	X	X	X
	A	\checkmark	X	\checkmark	X
	B	\checkmark	\checkmark	X	X
	AB	\checkmark	\checkmark	\checkmark	X

(C)

		Recipient			
		0	A	B	AB
$\begin{aligned} & \bar{\circ} \\ & \text { Co } \\ & \hline 0 \end{aligned}$	O	\checkmark	X	X	X
	A	\checkmark	\checkmark	X	X
	B	\checkmark	X	\checkmark	X
	AB		\checkmark	\checkmark	$\sqrt{ }$

(D)

		Recipient			
		0	A	B	AB
	0	\checkmark	\checkmark	\checkmark	\checkmark
	A	X	\checkmark	X	\checkmark
	B	X	X	\checkmark	\checkmark
	AB	X	X	X	\checkmark

O \rightarrow Universal Donor AB \rightarrow Universal recipient

Sol. [D]
77. A 25,000 Da protein contains a single binding site for a molecule (ligand), whose molecular weight is 2,500 Da. Assuming high affinity and phsiologically irreversible blinding, the amount of the ligand required to occupy all the binding sites in 10 mg protein will be
[2017]
(A) 0.1 mg
(B) 1 mg
(C) 10 mg
(D) 100 mg

Sol. [B]
$\frac{25000}{2500}=\frac{10}{x}(\mathrm{x}=1 \mathrm{mg})$
78. In an in vitro tanslation experiment, poly (UC) RNA template produced poly (Ser-Leu), while poly (AG) RNA template produced poly (Arg-Glu) polypeptide. Which ONE of the following options represents correct interpretations of the codons assignments for Ser, Leu, Arg, and Glu.
[2017]
(A) Ser-UCU, Leu - CUC, Arg - AGA, Glu - GAG
(B) Ser - CUC, Leu - GAG, Arg - UCU, Glu - AGA
(C) Ser - AGA, Leu - UCU, Arg - GAG, Glu - CUC
(D) Ser - GAG, Leu - AGA, Arg - CUC, Glu - UCU

Sol. [A]
Sequence of 3 nitrogenous base is one codon.
79. A single bacterium is actively growing in a medium that supports its growth to a number of 100 million. Assuming the division time of the bacterium as 3 hours and the life span of non-dividing bacteria as 5 hours, which ONE of the following represents the maximum number of bacteria that would be present at the end of 15 hour?
[2017]
(A) 10
(B) 64
(C) 24
(D) 32

Sol. [D]
Time $=\frac{15}{3}=5$ times division occur. No. of bacteria $=2^{5}=32$
80. A couple has two sons and two daughters. Only one son is colour blind and the rest of the siblings are normal. Assuming colour blindness is sex-linked, which ONE of the following would be the phenotype of the parents?
(A) Mother would be colour blind, father would be normal.
(B) Father would be colour blind, mother would be normal.
(C) Both the parents would be normal.
(D) Both the parents would be colour blind.

Sol. [C]

Male child recieve X-chromosome from mother only. Another normal son indicates that mother is carrier.

